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1. (i) Atintersections

(ct —a)* + (;—b)2 =72

M1

Expanding brackets, collecting like terms and multiplying throughby t? (t # 0) gives

c?t* —2act®*+ (a?+ b?> — r?)t? —2bct+ c* =0

as required. AL (2)
(ii)
\ \ i AN 2 2 2 2
;tﬂ:(;ti)_z;;titj:(%‘) _z(a +Cbz T)zé(az—b2+r2)
M1A1 dM1A1 *A1 (5)
as required.

Dividing the equation (*) by t* (again t # 0) gives
2ac 2bc  c?
2 _ 27" 24 p2_ )24 7
c : +(a*+ r?) s + o
which has roots t; and thus M1

c?t*—2bct®*+(a?+ b2 —r?)t?—2act+ c*=0

M1A1
has roots %, which is just (*) with a and b interchanged. El
Thus
=12
2 n2_ 2 2
Ztiz_cz(b a’+ r?)
i=1
from the first result of (ii). A1(5)
Alternative:-

4
Z 1 t265% 852 4ty 2852 6% + t3 28, %t % + 42t 2 8,2

- t;2 t2t,2ts2t,2

M1

_ (tatpts +tytaty + tatyty + tatity)? — 2t tytaty(tyt, + toty + tyty+ tots + tots+ taty)
(1‘L11‘L21‘L3t4-)2

M1A1A1
22 2, 2
= ;(b - a*+r?)

Al



2 _ 2, ) _ 2 2 =

asrequired. M1 *A1(2)
(iv) Touching attwo distinct points implies the roots of (*) are two pairs of coincident roots.
WLOGsay t; =tzand t, =t, . E1

then as the product of the four rootsis 1 (from (*)), t;%t,> =1 B1andtherefore t;t, = +1.

P is (ctl, ti) and P, is (ctz, ti) = i(ti,ctl) B1 which arereflections of one another in
1 2 1

y = +x respectively, and these are the mediators of the pairs of points. E1 The centre of the circle
C, lies on the mediator of P, and P, E1 which we have shownis y = +x . E1(6)

Alternative E1B1 as before

2a a
t1+t2+t3+t4:? :t1+t2:E

2b 5 5 5 5 2b
t1t2t3+t2t3t4+t3t4t1+t4t1t2=? = tl t2+t2 t1+ tl t2+t2 tlz?

b
= (tl + tz)tltz = E
M1 A1l

So tit,= Z =+1 andhence a = +b andsothe centreof C, is (a,+a ) asrequired.

M1A1

Alternative E1B1 as before

1 1 1 1 1 1

t12+t22+t32+t42=2(t12+t22)=2(—2+—2)=—2+—2+—2+—2
tZ tl tl t2 t3 t4-
M1A1

and thus CZ—Z(aZ— b? + r2)=:—2(b2— a’?+ r?)soa®?= b? and a=+b

M1A1



2. (i)

ad+2b3+4c3=0
then
a®=0—2b3—4c3 =2(-b3—4c?)
which is even. If a were odd, then a® would be odd. So, a is even.
Thus 3p where 2p = a, with p anintegerand |p| < |a|] E1

Substituting for a in the original equation, 8p3 + 2b3 + 4¢3 = 0 . Dividing by 2 and rearranging
gives b3 + 2¢3 + 4p3 = 0 which is the original equation with a,b,creplaced by b,c p.

So we may repeat the argument with, say, 2q = b and then having done so repeat the whole
argument with 2r = c. E1

Thus 3p,q,7 integerswith2r =c, |r| <|c| and p3+2q3+4r3=0.

So if there were to be a set of such integers a, b, ¢, there would be a set of such integers p, g, r with
smaller modulus satisfying the same result. This argument may be repeated ad infinitum leading to
the conclusion that thereis no least modulus set of integers which is not possible as an infinitely
decreasing sequence of positive integers cannot exist being bounded by 1. (alternatively, assumea,
b, ¢ to be smallest modulus, then we have a contradiction) E1 Hence no such a, b, c exist. *B1(4)

(ii) If 9a® +10b3 +6¢3 =0,then 10b3 = —9a3 — 6¢3 = 3(=3a® —2¢?)
Thus 10b3 is a multiple of 3 and so, b3 is a multiple of 3 and thus, b is a multiple of 3.

Thus 3q where3q = b, with g anintegerand |gq| < |b| M1 Aland 9a3 + 270¢3 + 6¢3 = 0
which can be divided by 3 to give 3a3 + 9043 + 2¢3 = 0.

It would follow that 2¢3 = —3a3 — 90¢3 = 3(—a® — 30¢g3)and so 3r where 3r = ¢, withr an
integerand |r| < |c|.

Substituting for ¢, 3a3 + 90q3 + 5473 = 0 leadingto a3 +30g3+18r3=0.

We may repeat the argument with 3p = a leading to 27p3 + 30¢3+ 1813 = 0 which on division
by 3 gives 9p3 + 10¢q3 + 673 = 0 , the original equation witha, b, c replaced by p, g, r. Al

So the conclusion can be drawn in the same way as in part (i). (‘by descent’) E1 (4)

(i) Bn+1)2=9n%2+6n+1=30Bn?+2n)+1 BlEveryintegermay be writtenas 3n—1,
3nor 3n+ 1. We have shown that the square of an integer which is not a multiple of 3 is one
more than a multiple of 3, and if aninteger is a multiple of 3 then it can be written3n and

(3n)? = 9n? = 3(3n?) which is a multiple of 3. Thus the sum of two integers can only be either a
multiple of 3, one more than a multiple of 3, or two more than a multiple of 3 depending on whether
the two integers are multiples of 3, exactly one is a multiple of 3 or neitheris a multiple of 3
respectively. Hence the result that the sum of two squares canonly be a multiple of three if each of
the integers is a multiple of three. E1

If a®? + b? = 3¢?, by the result just deduced,

dp,qwhere3p=a, 3g=>b and |p| <lal, Iq| < |b| M1



Substituting for aand b, 9p2+ 9¢2 = 3¢? so ¢? = 3(3p%+ 3g?%) meaningthat ¢? is a multiple of
3 and hence c is a multiple of 3.

So 3r where 3r = ¢, withr anintegerand |r| < |c| , and substituting for c and dividing by 9 ,

p?+ q? = 3r? which is the original with a, b ,c replaced by p, g,r. Asin (i) and (ii), the required
result follows by descent. E1(4)

(iv) (4n+1)2=16n2+8n+1=4(4n?+2n)+ 1 so, the squareof an odd integer is one more
than a multiple of four. M1 (2n)? = 4n? sothe square of an even integer is a multiple of four. M1

Thus, the sum of the squares of three non-zero integers must be 0, 1, 2 or 3 more than a multiple of
four as theintegers are all even, two even and one odd, one even and two odd, or all odd
respectively. Al

Thus if a? + b% + ¢ = 4abc, a,b ,and ¢ mustall be even. Bl

Thus 3p,q,rintegerswith2p=a ,2q=b,2r=c,and |p| <lal, gl < |b|, Ir]l <lc| . M1
So, if a?+ b?+c? =4abc, 4p? +4q? + 4r? = 32pqr , which simplifies to

p?+ q?+1r? = 8pqr. (Alternatively, a? + b? + ¢? = 2"abc , a? + b? + c? = 2™1abc)

M1

The argument can be repeatedwith p, g, and r all being even integers with the multiple of the RHS
being a power of two greaterthan4. E1 Thus the result follows by descent. E1(8)



3. () ax? +bxy+cy?=1

Differentiating with respectto x ,

rax+by +bx 24 200 0
ax + y+ xdx‘l' Cydx_
M1

For stationary points, Z—z =0,s0 2ax+by=0
Multiplying the original equation by b?
ab?x?+ b3xy+ b?cy? = b?

Thus as by = —2ax, ab?x? —2ab?x?+ 4a’cx? = b?> M1

a(4ac — b?)x? = b?

Al
We require two stationarypointsand as abc+ 0, b# 0 andas a> 0,
4ac—b%*>0

giving
b? < 4ac

asrequired.

(Alternatively,as 2ax = —by, (—=by)? + 2b(—by)y + 4acy? = 4a, (4ac — b?)y? = 4a for
M1A1)

E1 (4)
(i) ay® +bx?y+cx =1

Differentiating with respectto x ,

dy dy
2 2 —
3ay dx+2bxy+bx dx+c_0

M1
For stationary points, Z—z =0,s0 2bxy+c=0
Multiplying ay3+ bx?y+cx =1 by 8b3x3,
8ab3x3y® + 8b*x5y + 8b3cx* = 8h3x3
So substituting for 2bxy,
—ac3® —4b3x*c + 8b3cx* = 8b3x3
M1

which simplifies to



4b3cx*—8b3x3—ac® =0
*Al
Consider the curve,
y = 4b3cx* —8b3x3 —ac?
This has stationary points given by

d
2 16b3cx3® — 24b3x%2 =0
dx

M1

i.,e. 8b3x%(2cx—3) =0 so,thereare only two stationary points on this quartic, which are
(0,—ac?®), Alwhich is a point of inflection on the y axis, E1 and

<3 81b% 27b3 3)

— —— —ac
2¢’ 4¢3 c3

Al
which is a turning point.

So for 4b3cx* —8b3x3 — ac® = 0 to have two solutions, if ¢ > 0, the turning point needs to be a

3 3
841; - 22—: —ac® < 0Elandif c < 0, the turning point needs to

minimum below the x axis and so

81b%  27b3 .
o o ac® > 0. E1Thus, in either case

be a maximum above the x axis and so
multiplication by 4¢3 yields

81b3 — 108b% —4ac® <0
which simplifies to
4ac®+27b3 >0
as required. E1(10)

(iii) Thesearethree simultaneous equations in two unknowns sowe may solve for two of themand
substitute into the third. The first equation rules out x = 0 as the third equation would imply

y =0, given thatabc # 0 and thus ay3 + bx?y + cx # 1 asrequired.

If we consider 2bxy + ¢ = 0 and 3ay?+ bx? = 0, thesecond if these implies thatas b > 0,
thena < 0. E1

Multiplying the second of these by 4by?, 12aby*+ 4b?x%y? = 0 and substituting from the first
of these two equations,

12aby*+c¢?2 =0
M1

Thus



4| —c2
Y=* |92

Al

o cC 12ab__4 —3ac?
=t e =t |
Al

Substituting thesein ay3 + bx?y + cx = 1 , having first multiplied itby v ,

and so

thatis ay* + bx?y?+cxy =y
gives

—c? 2

CZ 4 _C2
126 1 25 | 12ap

which simplifies to

M1
Raising this to the power four,
8 —c?
81b*  12ab
and thus
4ac®+27b% =0
asrequired. *A1(6)

(Alternative: The first two equations were combined to give 4b3cx* —8b3x3 — ac® = 0 in part (ii).
M1

The second and third can be combined to give 4b3x* +3ac? =0 M1

So, 8b3x3 +4ac3=0

Thus x = —53\/E Al
b2

andy=3\/L4_aA1

So, to have a solution we require



which simplifies to the required result. M1A1)



4. (i) Suppose

x x x X _
2k coshzcoshzm coshﬁsmhz—k = sinhx

for some integer k. E1

Then
cosh 2’i€7 sinhz,f?

X X
2"“coshzcoshz-ucoshzk+1 sinhzk+1 = 2sinhx —
smhz—k

(which is legitimate because x # 0 and hence sinh% +0)

. 2 sinhzk% cosh 2’57 . sinhik .
= sinhx — = sinhx — = sinhx
smhz—k smhz—k
which is the desiredresult for k + 1. M1
x X
2 cosh ESinhE = sinhx
Bl
so, the resultis truefor n =1.
Hence by the principle of mathematicalinduction,
inhx = 2" cosh= cosh -+ cosh — sinh —
sinhx = 2™ cos 2cos 2 cos 2nsm o
for all positive integern .
Thus
X
sinhx n on hx hx hx _hxxl 1 hx hx
= 2™ cosh =cosh —--- cosh—sinh— — — ——— = cosh —cosh—
x sinhzx—n 2 4 2n 2n x 2n sinhzx—n 2 4

as required. This working is permissibleas x # 0 ,and so sinhik #+ 0.E1(4)
2

(ii)

y _ y _ 1 -1
sinhy y+3§_?+L!5+,,. 1+33’)_!2+3;_T+...
asy—0.El
As, from (i),
sinh x % _ hx hx hx
" Sinhzx_n—cos 5 cosh - cosh o

letting n - oo,

X
~-~cosh2—n



and using the result shown from the use of the Maclaurinseries that

X
an 51
sinhz—n
we have
sinh x X X X
=cosh§coshz--~cosh2—n-~-
asrequired. E1(2)
1 EY W=
: _ . _23_3 Z_‘/EJ'\/E_i x _ Wz _ V2+1
(iii) Lettingx =1n2, sinhx = . —4,cosh2— . _zﬁ'COSh4 = =i
M1
etc.
Thus
3
) 3 WV2+1 JWV2+1
— X X
In2 2.2 /
W, [
M1A1l
and
1 4 VZ2+1 JV2+1 4 1+v2 1+V4V2
[ x x ces — X X
NACIE N MR N NN N
Al
The denominator of the first fractionis
1 1 11
2X22Z x2% x-- =22t =02 =4
E1
So
1 14+v2 1+V2
m2- 2 X2z X7
asrequired.
(iv) Substituting x =%T in M1
sinh x hx hx b X
= cos 2cos 4---cos o
and using sinhix = isinx, coshix = cosx, M1
. U
sinh—- hiT[ hin " in I T W T
i = Cos ZCOS g---cos 2n+1—E—coszcosa--cosznﬂ---

2 2



M1A1A1

<'

2
142
cosE=—2, cosZ=2cos2Z—1 andthus cos= = = 22
4 2 4 8 8 2 2
V2+VZ \/—
1= ,/2+ 2+V2
and similarly, cosln—6= 22 = . etc. M1A1M1
So
2 2 V2442 2+2+42
—_=— X X
T 2 2 2
as required. *A1(9)

(Alternatively, by induction

) on X X x X
sinx = 2™ cos =cos—:+- cos —sin—
! 2%, 2n > om
M1 A1 E1(as for (i)
As ,y -1lasy—-0,
siny
sinx X X b
T= COSECOSZ"'COS§-"

M1A1

and then, substituting x = g M1 result follows as before AIM1A1.)



5. (i)

a

[ e
1+exx

—-a

Alternative 1.

Lomm =%

a1+e*

ai+eX

Alternative 2.

Substitute u = e*

[ =, 2

aj+e*

2a—1lne%®=aqa
*A1(3)

Alternative 3.

Substitute u = 1+ e*

aj+e

2a—1lne%=aqa
*A1(3)

Alternative 4.

a

[
1+e"x

—-a

a

_f L
) 14ex X
0

(ii)

a 1 1+e% 1
f— dx = f1+e‘a ;

a
f 1 d_f 1 1 =
+0 1+e~x x_o 1+e"+1+e‘x =

a

—f C  dr=[-In(e~ 4 Dl% = (L) = Inea =
= | sy dx=[-Ine fa=In{——Z—7)=he*=a

—-a

M1 Al *A1(3)

dx =[x —In(1+)]%, =2a—1In (e +1)=2a—lne‘1=a

1+e" 41

M1 Al *A1(3)

11 B 11 L _ e*+1 _
1+u u f “u du = lInu—In(1+ u)]e_a =2a—In (e—a+1) -
M1 Al
l _ ea l__ _ e — ea—+1 —
u du = fe‘“u 1+u du =[Inu —In(1+ u)] -« =2a=In (e—a+1) -
M1 Al
a 0 a 0
_f 1 d f 1 d —f ! d f ! d
T Tre T T3 T ) Trer P Trex ™
0 -a 0 a

a

1+e™+1+e™™ p
o 1+e*)(1+e™) X

M1

dx=1[x]$ =a

f“2+e‘x+e"‘
Jp 2+er+e™

Al *A1(3)



Suppose
fg(x) dx =G(x)+ ¢

Then if

a
fg(x) dx=0 Va=0
0

G(a)— G(0)=0 Va

so G(a) = constant VYa and hence 2_? = g(x) =0 Vx =0 asrequired.

Alternatively, by the FTC, g(a) =0 Va =0 El
a 0 a
J‘ 1 d J' 1 d +f 1
=q ©
1+fo) ¢ T+ ™ S 1+7G0
-a -a
M1
0 a
ey e by o
ST T T T
a
M1A1l
a
f ! + ! 1d 0
& — =
JT+f 14/ @
M1A1l
so, by statedresult at start of part,
! + 1 1 0V
o -1 =
T+ "1+f( g
E1E1

S 1+f+1+f(—) —(1+f(=0)1+fx)) =0
e flo)f(-x) =1

*B1 (9)
(i)
h(x) h(x) e h(—2)
,[1+f(x) dx = ,[1+f(x) dx+,[1+f(x) dx=f1+f(—x)'_dx+ f

—-a —-a 0 a

M1

dx =a

0

F )

1+ f(x) dx



F h h(x) a
- !1+f(—x> * i = | s

by the result of (ii). M1 *A1(3)
(iv)
Vs T T
2 2 2
e ™™ cosx p e * cosx J coS X J
coshx T ) exe X=2 Trexx
m A ‘n
2 2 2
M1A1

cos x satisfies the conditions for h(x) in part (i) and e2* satisfies the conditions for f(x) in part
(ii). E1

Therefore,

B

e ™ cosx T
f—dx=2 cos x dx =2 [sinx]? =2
cosh x 0

oy

2
M1 A1(5)



6. (i)
o2
cos(@ + a) — cos® = cosOcosa —sin@sina — cosf ~ cos O <1—7> —sinf a —cos 6

2
= —asinf — a? cos 6 asrequired. M1 *A1l

If sing #0
a’ a .

sin(@ + a) —sin 6 a cosf —731n9 cosf -5 sin @
lir% G+ 6’=lin(1J > = 1i1'% o = —cotf
a- — a- a- ;

cos @) cos —asiné —% cos 6 —sing — 7 cosd

M1A1 Al
sin(@+a)-sinf __ .. cos(6+a)

(Alternative by I’'Hopital, lim = (lxir% —cot(6+ a) = —cot

=0 cos(B+a)—cos O  a—0—sin(@+a)

M1 A1 Al)
If sind =0
sin(@ + a) — sin@ cos @ -2
lim = lim———= lim—
a-0cos(@ +a) — cos@  a-0 ~% cos 6 a-0
M1
- —00as a— +0 and > as a—-> -0 Al(7)

(i) (a) If Qg is theinitial point of contactof C;and C,,andif X is the point on C, which was
initially at Q, , thenif Q0OQ, =0, arcQQ, on Cyis of length (n— 1)ab E1 and this will equal the
arclength QX on C, .So if Tisthe centreof C,, QTX = (n—1)6,and TP makes an

angled + (n —1)0 = nf with the x axis. E1

Thus the x-coordinate of Pis x(8) = nacos8 + acos(nf) = a(ncos @ + cosnh) asrequired.
Similarly, y(8) = a(n sin@ + sinnf). M1 *A1(4)

(b) OP = (n—1)a ifand only if (ncos® + cosnB)? + (nsinf +sinnf)? = (n —1)?

Thatis if n? + 2ncos(n—1)80+ 1=n?—-2n+1 whichis cos(n —1)8 = —1

M1
so, when (n— 1)@ isan odd multiple of M1
Therefore 8 = % m for r=20,1,- A1(3)
(Alternatively, OP = (n—1)a only if ncos@ +cosnf = (n—1)cos 8 i.e. cosnd = —cos 0 ,
and nsinf +sinnd = (n— 1)sin8 i.e. sinnf = —sin8 M1

Thus cos(n —1)0 = —cos 0 cos @ + —sinf sinf = —1 so (n — 1)0 is an odd multiple of 7M1

Result as before A1)

(c)



y y(0y + a) — y(6,) e a(nsin(8, + a) + sinn(6, + a)) — a(nsind, + sinnd,)
Pt x(8y +a) — x(6,) PAl a(ncos(6, +a) + cosn(f, + a)) — a(ncos 6, + cosnb,)

M1
2 2,2
n (a cosf, — % sin 00) + (na cosnf, — % sinn90>
= lin}) 2 202
a—
n(—a sinf, — % cos 90> + (—na sinnf, — n za cos n90>
M1 A1
cos By + cosnb, — % (sin 6y + nsinnb,)
= lim
@>0 _(sin#, + sinnf,) — %(cos 6, + ncos nb,)
sin 8, + nsinnf,
" cos By +ncosnb,
as cos 6, + cosnf, = 2 cos(n + 1)92—0 cos(n— 1)92—0 and (n— 1)92—0 =§ so cos(n — 1)92—0 =0

and similarly, sin 8, + sinnf, = 2 sin(n + 1) 92—0 cos(n—1) 92—0 =0

Further,
sinf, + nsinnd, = sin6, + n(sin((n — 1) + 1) 6,)
= sin 6, + n(sin(n — 1) 6, cos @, + cos(n — 1), sin6,)

= (1—n)sinf,

and

cos B, +n cosnb, = cos 6, + n(cos(n — 1), cos 6, — sin(n — 1) 6, sinb,)

= (1—n) cos 6,

So

. y(6y+a) —y(6,) (1-n)sinb,
lim

a-0x(6y +a) —x(6,) - (1—n)cosé, = tanfy
M1 Al

The LHS is the gradient of the tangent to the curve at P and the RHS is the gradient of OP , as
required. E1(6)



7. (i)
a x bz —cy
f(r)=n xr:(b) x(y): (cx—az)
c z ay — bx

a bz —cy
The x-component of f(f(r)) is the x-component of <b) X (cx — az)
c ay —bx

whichis b(ay — bx) — c(cx — az) = —x(b? + ¢?) + aby + acz asrequired. M1 *A1

—x(b? +c?)+ aby+ acz = —x(a? + b? + c?) + a?x + aby+ acz = —x + a(ax + by + cz)

as n is a unit vector. E1
Similarly, the y and z -components of f(f(r)) —y + b(ax+ by + cz) and —z + c(ax + by + cz)

respectively and thus fO‘(r)) =—-r+nr)n M1*Al

$(s()

(!3-‘;)'53 i
ph
G1G1G1(8)

(ii)
gm) =n+sing f(n)+ (1—cos 6) f(f(n))
=n+sind n xn+ (1 —cos 9)((n.n)n — n)
=n
M1A1
g(@) =7 +sin6 f(r)+ (1 —cosd) f(f(1))
=r+sinf n xr+ (1 —cos 9)((n.r)n— r)
=rcosf +sinf n Xr
Al

If  is perpendicularto n, thenr,n,andn X r form a mutually perpendicular vector triad.



gmapsr torcos 8 +sinf@ n X r which represents ananticlockwise rotationby 6 about an axis
in the direction n as B1 both vectors are of equal magnitude E1 and are atangleof 6 to each other
E1 and are both perpendicularto n. E1(7)

iii
. h(s)=—s—2f(s)=—s—Z((n.s)n—s)=s—2(n.s)n
So, h represents a reflection M1 in the plane through the origin perpendicular ton Al
Justification. If r is asin (ii).
h(n)=n—-2(nn)n=-n
h(r)=r -2nr)n=r
hnxr)=n xr—-2(nn Xxryn=n xr
B1

So any vector in the plane through the origin perpendicular to n is invariant under h, E1 and any
vector in the direction of n is reversed. E1 (5)



8. (i)
By de Moivre,
cos(k@) +i sin(k6) = (cosO + i sinH)*
= [cosk 6 — (IZC) cos¥=26 sin?6 + (Z) cosk=*6 sin*g — - ]
+i [(llc) cos®* 16 sing — (g) cos®73 0 sin36 + (15() cos®™> 6 sin@ — --- ]
M1A1A1
Equating imaginary parts,

sin(k8) = (Ilc) cosk= 16 sin@ — (g) cosk=3 6 sin®0 + (15() cosk=5 6 sin°0 — -

=sinf cosk 10 (k— (Ié)tanze + (I;)tan‘lg — )

M1

=sin@ cosk¥ 14 (k— (g) (sec?6—1)+ (ISC) (sec?26 —1)% — )

asrequired. *Al

Similarly, equating real parts,

cos(kB) = cos* 6 — (I;) cos¥=2 6 sin?0 + (Z) cosk¥* @ sin*g — -

= cosk @ (1 - (IZC) (sec?6 — 1)+ (Z) (sec?8—1)%— )
B1(6)
(ii)
sin(kf) =0 = sinf cosk~ 160 (k - (g) (sec?8—-1) + (ISC) (sec?0 —1)%?— ) =0

Thus, if k were odd,

k-1

sing — (k—(k)(a2—1)+(Ig)(az—1)2—---+(—1)%(a2—1)_>=0

M1
and we aregiven thatsin8 # 0

As a isodd, (a® — 1) iseven. Thus

(k - (Igc) (@®-1) + (ISC) (@2 —1)% — -+ (—1)%(& 3 1)ﬂ>

is the sum of one odd number (the first) and the remainder even, and hence is odd. Al



1
=

We are given that sinf # 0and becausea is odd # 0, and the bracketed expressionis odd

and thus not zero. Hence, we have a contradiction and thus k cannot be odd, and must therefore
be even, as required. E1

. . . . k6 Kk k..
If sin(k@) =0, and k is even, assin(k8) = 2 sin=- cos =~ where 5 isaninteger, we know

sinkz—g # 0 soit would have to be that coskz—‘9 =0. *B1 (4)
let X =n.
2

By the secondresult of (i), cos(n8) = cos™0 (1 — (Z) (sec?6—1) + (Z) (sec?0 —1)% — )

(- - D ()i )
M1

As before, the bracketed expressionis odd, being the sum of one odd number (the first which is 1)
and the remainder even, and thus not zero, so cos(nf8) # 0 which is a contradiction. A1

Thus, thereis no least integer k for which sin(k6) = 0, dM1and hence that k6 = 180p, i.e. that

__180p

0 . Hence @ isirrational. E1 (4)

(iii) Suppose thereis a positive odd integer k such that sin(k@) = 0 and sin(mg¢) # 0 for all
integersm with 0 <m < k.

Then sin(k¢) = sing cos* 1 ¢ (k - (g) tan?¢ + (15() tan* ¢ — )

=sing cosk 1g (k - (I?f) b2 +(]5‘) b4 — )
M1
As before in (ii), the bracketed expression is odd and thus not zero, sing # 0 and as
cot =% # 0, cos @ # 0. Hencea contradiction. E1
So, it would be necessarytohave k even.

. . . .k k k..
If sin(ke) =0, and k is even, assin(kg) = 2 smT(p cosT(p where 5 isaninteger, we know

sin%(p # 0 soit would have to be that cos%p =0. ElLet % =n.

cos(ng) = cos™ ¢ (1 - (’21) b2 + (Z) b4 — )

Once again, the bracketed expressionis odd and thus not zeroand cos ¢ # 0 sowe havea
contradiction. El

Once again, thereis novalue k for which sin(kg) = 0,M1li.e, that ¢ = % sog isirrational. E1

(6)



9.
Conservation of linear momentum for the collision between A and B gives

mv, + kmv, = mu

M1
i.e.
vit+kvy,=u D
Newton’s experimental law of impact gives
Vy,— V= eu (2)
M1
(1) — k(2) gives v1(1+ k) = u(1 — ke) and hence v, = ug;:)e) as required. *A1
(1) + (2) gives v,(k+ 1) =u(1 +e) and hence v, = % asrequired. *A1(4)
1
Time for B to reachwall is ;—u and the time to then return to point %D from wall is :ﬂ—u
ip
Time for A to reach point %D from wall is ;
Thus
1 1
20 _D 3P

which simplifies to

1 1 1 1
57*@7(”2—)
Hence
e
@ _ﬁ(1+26)
Al
Thus

(1—ke) = (1+e)(1+26)

e )_1+2e—e—e2

ke:l_(1+e)(1+2e =T 1+2e

M1

andso



_1+e—e2
e(1+2e)

asrequired. *A1(5)
(ii) The first collision (betweenA and B)is as in part (i).

The second collision (between B and C) is as in part (i) as the ratio of masses is thesame but u is
replaced by fu .

Thus, after two collisions, A has speed au, B has speed afu ,and Chasspeed f2u. M1A1

The condition that B and C collide half the distance from the wallisasin (i) (D = 3d)

So
_1+e—e2
e(1+2e)
E1

Equating the times of A and B toreach the point of simultaneous collision, we have

Ed d éd

2¢_4d 2¢

au fu afu
M1A1l

Therefore

5_2+3

a B ap

56 =2a+3
Al

So, substituting for a and £,

5(1+e) 2(1-ke)
(1+k)  (@(Q+k)

Thus,
5+5e=2—-2ke+3+3k
5e = k(3 —2e)
andso
b Se
3—2e



Equating these two expressions for k

1+e—e2_ Se
e(1+2e)  3-2e

M1
(3—=2e)(1+e—e?)=5e%(1+2e)
2e3—5e?+e +3= 10e3+ 5e?
8e3+10e?—e—-3=0
Al
Factorising we have,
(2e—1)(4e?+7e+3)=0
further
(2e—1)(e+1)(4e+3) =0

M1

e>0soe =% asrequired. *A1(11)



10. (i)
BP = 2acos 0
Thus, the extensionof BP is 2acos8 —a = a(2cos§ — 1)

M1

a(2 cos 6-1)

and the tensionin BP is s; W =s;W(2cosf—1)

Resolving in the direction BP , W sinf =s,W(2cos6 — 1)
M1 A1

(Alternative

Resolving vertically Tzp sin@ + Tgp cos@ = W

Resolving horizontally Tgp cos8 = Tgp sinf

Solving simultaneously Tgp = W sin8

So Wsinf =s;W(2cos6 —1)

M1Al1 )
and hence
sin 0
S 1=~
17 (2cos 6 —-1)
asrequired. *Al
By symmetry,

B cos 6
52 = (2sin —1)

B1 (5)
[Both divisions are valid as both extensions are positive and so cos8 > % and sin@ > %] @
(ii)
The GPE of the particleis =W X BP sinf = —2Wasin# cos 8
M1A1

The EPE of BP is
S1 W(a(Z cosf — 1))2
2a
M1

and the EPE of CP is



S, W(a(Z sin@ — 1))2
2a

Thus, the total potential energy of the systemiis

—Wa
— (4sinfcos @ —s;(2cos  —1)? —5,(2sinf — 1)?

Al
—Wa sin @ cos 0
__" . v Y2 Y 0 1)2
> <4sm9c050 (2cos€—1)(zcose 1) (251n9—1)(25m9 1))
—Wa
== (sin® + cos0)

So

1
p= E(sin@ + cos )
A1(5)

(sin@ + cos 8) = /2 cos(6 — 45°)
M1 A1

As cosf >§ and sin@ >%,300<9 < 60°

The expressionis a maximum when 8 = 45° when %(sin 6+cosf)= g *B1 which is attainable

and a minimum when 6 = 30° or 60° (from @) M1 E1when %(sin@ + cosf) = i(l ++/3) M1
*A1(7) which cannot be attained.

(Alternative 1. (sinf + cos@ ) = /2 sin(8 + 45°) which, similarly, is anattainable maximum
when 0 = 459 and an unattainable minimum when 8 = 30°or 60°

Alternative 2. Instead of using harmonic form

Z—Z = %(cos 0 —sin0 ) = 0 for stationaryvalue M1 A1, giving tand = 0, 8 = 45° and when

%(sin@ +cosf) = \/75 *B1 which is attainable and a minimum)

So 722p>i(1+\/§)

We require to show that 0.75 > p > 0.65.

4 3 2 43 1
64<75 =< =>§<T=>0.65<Z(1+\/?_>)

M1



9 1.2 _ . 3_\2
16- 212 20173
M1

Thus, 0.75 > \/75 =p> i(l + \/§) > 0.65 which shows that p = 0.7 correct to one significant

figure. *A1(3)



11. (i) (@) As the coinis fair, the distribution is binomial and symmetric,
so PX=r)=PX=N-r)=PX=2n-r7)

Therefore,

P(X <n— 1)_21»()( l)-ZP(X—Zn l)—ZP(X—l)—P(X>n+1)

i=n+1

El

1=PX<n—-1)+PX=n)+PX=2n+1)=2PX<n—-1)+P(X =n)

Hence,
P(XSn—l)z% (1-rP(X=n)
E1(2)
(b)
u=Np = 2nx% =n (or by symmetry) B1

6= E(X—ul) = Z(n D)D)+ Z(r w3

. r=n+1
Z(n r) 271() —Zn-l-l(r n) Zn r()
a0 La-o @)@
M1

—ZZ(n r) Zn ( ) nz:(n T) 2n 22"‘

asrequired. *A1(4)

(c)
) . (Zn) _ (2n!) 2n X (2n—1)! — 5 (Zn _ 1)

r T (2n—r)!=(r—l)!((Zn—l)—(r—l))!_ "\ro1
M1 *A1(2)
n—-1 n— n—1 1
2n 2n
8= Z(n r) 22n_ Z n 22n_ r )22n_1
r=0 r=0



But

Thus

asrequired.

(Alternative

n n
6= Z(n —7) (2:1) 22111—1 = nz (Zrn) 2231—1 - ZnZ (Zrn_—ll)zzi_l
r=0 = =

0 r=1
1 1 o) N, (2n—1y 1
22n-1 (nz (22n (n))_r=1 Zn (T—l )22n—1)
M1 M1
n 1 n-2
= (22n—1 E(2:) _9 2, (an— 1))

“nn—-1! Znnl(n—-1)! 2nlnl 2

(Zn_ 1) (2n-1)! 2n(n-1! 1(2n)! _1(2n)

n n
M1
o= g ()= ()
*A1(7)

r=0 r=1
M1A1
n 1 n—1 1
_ an (zrn)27 _ an (Zn— 1)2271_1
r=0 s=0
M1

=2nP(X<n)—-2nP(Y<n-1)



(where Y is a binomial variable (Zn — 1,%) ) M1
1 oy 1
=n(1 +P(X—n))—2nx§—n(n)27
M1 M1  *Al )

2n+1

(i) p=Np= (2n+1) x+=

& 2n+1 1
_ o _sn 2n+1 (_)
§=E(X —ub = Z_O |r 2 |( r ) 2

n
=5 (T ) (2 Y

(or by symmetry)

2n+1

r=0
M1 A1l
n
_ 2n+ 1\ 2n+1 2n+1
~2m| 3 r(
r= =0
n
1 [zn+1 o + 1
~ 2 Z (
1 [2n+1
—_ 2n __
| X2 Z(zn + 1)( 1)]
using the first result of (i) c) M1
1 [2n+1 N
n 2n
_ = 2n _
= 5| X 2 (2n+1)Z,(T)]
r=

_@n+1) (22 22" — (Znn)

22n 2 2

M1

_ (2n+ 1) (zn)

22n+1 n
A1(5)

which can alternatively be written as

_ 2n+ 1) (2n)! 3 2n+ 1)! 3 Cn+1D!'(n+1) B (n+1) (2n+1)

220+l pinl — 22n+ipinl T 22n+l(p4 1)Inl 220+l n

(Alternative



n
2n+1 2n+1 1
5=) (F5) " Ve

r=0
M1A1
n n
=Cna 02 " gz an e 02 (2 )
r=0 r=1
M1

-1
= (2n+ 1)%—(2n+1)z (25")%
s=0

= 0= -5 )

22n
M1

_ (2n+ 1) n

T 22n+1 (n)

Al )



12. (i)

If AOB = 6, then the probability distribution function for 8 f(6) = zl_n on [0,27]

0
AB = 2asin§

M1 A1

21

01
E(AB) :J- 2asin- — d@
0 2 2m

M1A1
__Za[ 9]2”
—COS > .

_4a
T

A1(5)
(Alternatives replace 8 with 2¢ , (@) =i on [0,m] ,

or minor segment AOB = 2¢ , f(¢) = % on [O,E] )
(ii)

2 2

X X
P(R < x) = —_— = )
ma a
M1
Therefore
2x
fR (x) = ﬁ
for0<x<a Al1(2)

If the ends of the chord are X and Y , then OXY is anisosceles triangle so
XY = 2+/a? — RZ%sin?t

M1A1(2)
a 2x
L(t) =f 2¢a? —x%sin?t — dx
0 a
M1A1l

4 (a2 5 . Zt)%]a
=|-55-=7 (@ —x°sin
3a?sin?t 0

4
= ~3gzeinzg (@ cos’t—a’)



4a(1—cos3t)

3sin?t
as required. dM1*A1 (4)
(1—cos3t) (1—cos3®t) 1+ cost+cos?t 1 +cost(1+cos t)
sin2t (1 —cos?t) 1+ cost " 14cost 1+ cost
M1
1 1 t
= + cost = cost += sec?=
2 cos? 5 2 2
M1 *A1(3)
(Alternative
(1 —cos3t) 1—cost+cost(1l— cos?t) 25in2§ 1 t
_ _ — 2 cpr2 o
2t = SinZt = — +cost—zsec 2+cost
sin 4sin?25cos? 5
2 2
M1 M1 *Al
giving
4a 1 t
02 e
(t) 3 cost + 5 sec’7

(i)
E(L(D) = fo243_a <cos t+% sec2%> % dt

M1A1l

_8a [ (t)]z
=35 sint + tan 21,

_ 16a
T 37

M1 A1 (4)



